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Nonparallel spatial stability of the boundary layer induced by Long’s vortex on a solid plane

perpendicular to its axis
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We consider the linear, viscous stability of the boundary layer induced by an unbounded vortex whose outer
inviscid structure coincides near the axis with Long’s vortex. The viscous boundary layer induced by the
interaction of such a vortex with a solid plane perpendicular to the axis has a known self-similar structure. The
spatial stability of this self-similar solution is analyzed here for axisymmetric and nonaxisymmetric perturba-
tions propagating towards the axis of rotation. Viscous and nonparallel effects on the stability of the perturba-
tions are retained up to their first order in the inverse of the local Reynolds number (nondimensional radius).
The resulting parabolic stability equations are solved numerically using a spectral collocation method varying
both the nondimensional frequency and radius. It is found that the flow is unstable to axisymmetric perturba-
tions far away from the axis (inviscid instability). The growth rate of this inertial instability mode first
increases and then decreases as the Reynolds number decreases (as the axis is approached). However, before
this inviscid mode becomes stabilized, new viscous instabilities for both axisymmetric and nonaxisymmetric
perturbations show up, which finally become stabilized at moderate Reynolds numbers. We characterize the
critical Reynolds numbers and frequencies for the stability of these unstable perturbations as functions of their
azimuthal wave number. It is found that the last perturbations that become stable as the axis is approached are

nonaxisymmetric, corotating, perturbations with an azimuthal wave number n=4.

DOI: 10.1103/PhysRevE.72.036305

I. INTRODUCTION

The viscous interaction of a free vortex with a solid sur-
face perpendicular to the vortex axis is a problem of engi-
neering and geophysical (atmospheric) interest. Very little is
known about the structure and stability of such an interaction
for physically relevant vortices. In this work we consider the
linear, viscous stability of the boundary layer induced by an
unbounded vortex whose outer inviscid structure coincides
near the axis with Long’s vortex [1], a well-known flow that
has been commonly used to model intense atmospheric vor-
tices such as tornadoes [2—4]. The viscous boundary layer
induced by the interaction of these vortices with a solid plane
perpendicular to its axis was considered in Ref. [5], where a
self-similar structure (of the second kind) was found. As the
axis of symmetry is approached, this self-similar solution
takes a relatively simple form, which is obviously not valid
very near the axis, where the flow turns upward to form the
rising viscous core of the vortex [6]. The structure of this
effusing core flow cannot be modeled by a boundary-layer
approximation. One has to solve the full [three-dimensional
(3D)] incompressible Navier-Stokes equations numerically
to close the problem. But before undertaking such a numeri-
cal approach, it is of interest to have some knowledge of the
stability of this boundary layer flow, which constitutes the
boundary condition for radially incoming flow in the numeri-
cal approach. In particular, one would like to know the range
of Reynolds numbers for which the self-similar boundary
layer flow is stable to nonaxisymmetric perturbations.

The spatial stability of the self-similar solution to the
boundary layer equations given in Ref. [5] is analyzed here
for both axisymmetric and nonaxisymmetric perturbations
propagating towards the axis of rotation. The first task will
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be to characterize this incoming flow with the minimum
number of dimensionless parameters. This is made in the
next section, together with a brief discussion of the physical
relevance of these vortices. Then, the spatial stability prob-
lem is formulated in Sec. III. Viscous and nonparallel effects
on the stability of the perturbations are retained up to the
order of the inverse of the local Reynolds number which, as
we shall see, is equivalent to a nondimensional radius in the
formulation given in this work. The results of the stability
analysis are described in Sec. IV, and some conclusions are
drawn in the last section.

II. BOUNDARY LAYER VORTEX
A. Structure of the basic flow

Experimental measurements in a wide class of both con-
fined and open intense vortices (vortex chambers, tornadoes,
etc.; see, e.g., Ref. [7]) show that their azimuthal velocity
decays as a power of the distance r to the axis of rotation
ranging between —0.4 and —1 and that they all have an im-
portant meridional velocity field superimposed onto the cir-
cumferential motion. These characteristics are both met by
the family of self-similar solutions for high Reynolds num-
bers to the Navier-Stokes equations given in Refs. [4,8]. In
cylindrical polar coordinates (r, 6,z), the structure of the in-
viscid, outer velocity field has the form

-
V= (o) =VO)" v = (1)
where 0<m <2 and the vector function V(y) is character-

ized by the swirl parameter L, or ratio of near-axis inviscid
azimuthal velocity to axial velocity,
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FIG. 1. Sketch of the coordinate system.

L=(v/w)y. (2)

For simplicity sake and as representative case of this family
of vortices, we shall consider here only the case m=1, which
near the axis constitutes the outer inviscid velocity field of
the well known Long’s vortex [1,4], though the formulation
will be given for any value of m.

It was shown in Ref. [5] that the viscous boundary layer
induced by an inviscid vortex such as Eq. (1) on a solid
infinite plane perpendicular to the axis (z=0) has no self-
similar structure. In other words, no self-similar solution of
the first kind exists connecting the no-slip boundary condi-
tion at the plane with the inviscid outer vortex, a peculiar
feature shared by other inviscid vortices without meridional
motion [9,10]. However, it was found that a self-similar so-
lution of the second kind does exist. This solution, which
was corroborated by solving numerically the boundary layer
equations, has the formal difficulty that is defined in terms of
an additional scale length R, which represents the radius of
the arbitrary solid disk perpendicular to the axis on which the
finite viscous boundary layer is developed (see Fig. 1 for a
sketch of the flow geometry). Nonetheless, near the axis,
when r<<R,, this self-similar structure of the second kind for
the boundary layer structure can be written in a simple form
which will allow us to solve the stability problem without
taking into account the scale length R, explicitly.

In fact, with errors of the order of (r/ RO)3 <1, the velocity
(u,v,w) and pressure (p) fields in the boundary layer can be
written as [5]

u=—ugf"(n), 3)

Uy
v = 9 4
el @

Uy
=—nf’ s 5
w="2nf () )
p/p — M(Z)Rm+2 Re—S/(m+2) HO’ (6)

where the nondimensional axial and radial coordinates inside
the boundary layer are

7 R= (7)

< -
ar)’ ar)’

and the boundary layer thickness is given by
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R(z) Re—2/(m+2)

8r) = (8)

In these expressions,
Re = (KQ)"R} ' /v> 1 9)

is a Reynolds number for the external vortex based on the
length scale R, where K is related to its circulation and Q to
the swirl parameter L, Eq. (2), through [4,8]
)1/4
. (10)
)

2-m—-(m-1)L? ( 4D
D=—, = —_—
m(2-m

mL*

The characteristic velocity u, appearing in Egs. (3)—(6) is
given by

14
= — Rem2), (11)
0

while Il is a constant that depends on m and L (its value is
not relevant here because the pressure of the basic flow does
not enter into the linear stability analysis). Finally, the func-
tions f(7) and g(7) are governed by the following equations
and boundary conditions:

3m 32-m) ,
fl//+ ff”+ f‘/ :O, (12)
m+2 m+2
3(1-m) 3m
”n U =0’ 13
- m+2 &f +m+2fg (13)
n=0, f=f=g=0, (14)
n—w, foyg" g— 0y (15)

where the primes denote derivatives with respect to 7. That
the velocity field is given by just two functions f and g is
related to the fact that the meridional flow is fully character-
ized by a stream function W (ru=-d¥/dz, rw=g¥/dr),
which is proportional to f(7).

As already mentioned, we shall consider in what follows
only the case m=1 (Long’s vortex) with L= \2, which is the
unique value of the swirl parameter allowed for m=1 by the
viscous regularity of the inviscid vortex at the axis [1,4]. For
this case, D=1/4 and Q=1 in Egs. (10). Figure 2 depicts the
functions f(7), g(7), and some of their derivatives for this
case.

B. Reynolds number and nondimensional radius

The above boundary layer approximation is valid for Re
>1 when r<R, [terms of the order of (r/R,)® and
O(Re2"*2) have been neglected [5]]. In addition, r must be
large compared to the boundary layer thickness &(r)—i.e.,
R>1. From Egs. (7) and (8), the relation between the non-
dimensional radius R and the Reynolds number Re is
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FIG. 2. Self-similar boundary layer solution.

r\2
R=|—] Re¥"?), (16)
Ry

The above inequalities tell us that the stability analysis given
in this work will be valid in the following range of values
of r:

Re—l/(m+2) < r <1 (17)
Ry
or
1 <R < Re¥m?2), (18)

Since the scale length R is chosen arbitrarily, these condi-
tions can always be met with sufficient amplitude provided
that Re> 1. It might also be noted that, owing to the condi-
tion R>1, u>v>w in the basic flow [see Egs. (3)-(5)].

In terms of R and Re, the scale length R, will not appear
explicitly in the nondimensional stability problem. Given
r/ R,y (and m) Eq. (16) provides the relation between R and
Re. This relation is plotted in Fig. 3 for m=1 and (r/R,)?
=0.1, which are the numerical values used in this work. As
the controlling parameter we shall use R. We start from R
— oo (inviscid stability) and decrease it until R becomes of
order unity, where the analysis is no longer valid. To account
for both the nonparallel effects and the viscous terms consis-
tently in the stability equations, we will retain terms up to
O(R™?) and O(RY?Re™3m+2)) (see next section). The re-
sults in terms of R (or Re) are universal and independent of
Ry. What will change with R, is the relation between Re
and R.

III. STABILITY FORMULATION AND NUMERICAL
METHOD

To analyze the linear stability of the above basic flow, the
flow variables (u#,v,w) and p, are decomposed, as usual, into
their mean parts, Egs. (3)—(6), and small perturbations,

u=uo(=f" +1u), (19)
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FIG. 3. Re vs R for m=1 and (r/Ry)*=0.1.

v:uo(%w), (20)
VR
nf  _
w=u0<?+w>, (21)
plp=uj(R™? Regy "y + p). (22)

The nondimensional perturbations s=[it,0,w,p]” are de-
composed in the standard form:

s(R,7,0,1) =S(R, n)X(R, 0.,1), (23)
where the complex amplitude

F(R,7)

G(R,
S(R.7) = HER :’7; (24)

II(R, 7)

depends on both the radial and axial coordinates. The other
part of the perturbation is of exponential form and describes
the wavelike nature of the disturbance,

R
X(R,G,t):explf a(R")dR' +i(n0—wt) |, (25)
R:

i

where R; is an initial or reference radius (or Reynolds num-
ber). The nondimensional, order of unity, complex radial
wave number a is defined as

a(R) = y(R) +ix(R). (26)

The real part y(R) is the local exponential growth rate, and
the imaginary part a(R) is the local radial wave number. A
nondimensional frequency w has also been defined. Finally,
the azimuthal wave number n is equal to zero for axisym-
metric perturbations and different from zero for spiral pertur-
bations.

Substituting Egs. (23)-(25) into the incompressible
Navier-Stokes equations and neglecting both second-order
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terms in the small perturbations and terms O(R~2), retaining
only the lowest-order viscous terms, the following set of lin-
ear parabolic stability equations (PSEs) results:

a8
L-S+M:-— =0, 27)
IR

1 1 1
L=L,+al,+ —=L3;+ -L,+ ;L
1 2 V§ 3t R 5

R32
R
\!
- W(L6 + a2L7), (28)
d
0O IN — 0
an
—1i 0 "0
L= g 0 f ,
0 —-ig O 0
0 0 J
—ig —
q on
2 0 0 0
=2 0 0o 2
L,= , , (29)
0 =2f 0 0
0 0 -2 0
0 0 0 0
gNi 0 0 0
L3_ . ’ s
0 gNi g O
0 0 gNi O
1+ 7 0 0 0
77(977
n (9
Ly=| -nof 0 0 n— |. (30)
an
0 -f 0 Ni
0 0 xnf"+f O
0 0 0 0
&
0 0 00 ﬁ 0 0
0 -2¢ 00
L5= , . L6: (92 N
ng 0 00 0 ﬁ 0 0
0 0 00
0 0 i 0
s
(31)
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0000 2 0 0 0
1000 -2 0 0 2
L,= . M= )
0100 0 -2f 0 0
0010 0 0 -2 0
(32)

In the above expressions we have rescaled the azimuthal
wave number and the nondimensional frequency,

N

q (33)

n w
R’ R’
in order that some terms containing these parameters enter at
the lowest order. The retained terms account for three differ-
ent effects on the stability of the perturbations: (i) the effect
of viscosity, (ii) the effect of the nonparallelism of the basic
flow and of the amplitude of the perturbations, and (iii) the
effect of the history, or convective evolution, of the pertur-
bations. This last effect (iii) is described by the d/JR terms
of the stability equations, which are the ones responsible for
the partial differential (though parabolic) character of the
equations. All these three effects are therefore negligible in
the limit R — o (or Re— ).

The above equations have to be solved with the following
boundary conditions at =0 and 7— oe:

F(R,©)=G(R,%) =H(R,©) =0, (34)

F(R,0) = G(R,0) = H(R,0) = 0. (35)

An initial condition at some large value of R=R; is also
needed to solve Eq. (27). However, this last condition will
not be used here because we shall look for local solutions
(but retaining d/dR terms) of the parabolized stability equa-
tions (see below).

As it stands there is some ambiguity in the partition of the
perturbations (23) into two functions of the radial coordinate
R. To close the problem one has to enforce an additional
normalization condition which puts some restriction on the
radial variation of the perturbation eigenfunction [11]. We
shall perform here a local spatial stability analysis: Given a
real frequency ¢ and azimuthal wave number N, Eq. (27) and
its R derivative will be solved locally for each radius R=R;
with the normalization condition [da/ C7R:|R:Ri=0~ This condi-
tion will restrict, as required, the downstream variation of the
perturbation eigenfunction, yielding, for each R, the local
growth rate and radial wave number (or the phase speed of
the disturbance) as functions of the axial distance to the
plate 7.

The eigenfunction S is expanded in a Taylor series about
R=R;, where only two terms are retained to be consistent
with the approximations made in the previous section:

dS(R, m)
IR | g,
=Sy(n) +(R=R)S(7). (36)

This expansion is now substituted into Eq. (27) and its R
derivative to obtain two equations for Sy and S; (|S;|<[Sy|).

S(R.m) =S(R;.0) + (R—-R))
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Using the local normalization condition [da(R)/dR]g-g =0,
one has

L-So+M-S,=0, (37)
L"-Sy+M"-S,=0, (38)
where the operator L is now evaluated at R=R; and
« 0Ly 1 L 1 L, 1 L L)
=—— +—=—+—7———(L¢+ ,
R 2R R R T 2 gReNemr 0T
(39)
. LI N
M = Ll + aL2 + V!’EL?) + RL4 - Re3/(m+2) (L6 +a L7)
(40)

For given ¢, n, and R=R,, this constitutes a nonlinear eigen-
value problem for the complex eigenvalue a and the complex
eigenfunction

xtn=(3). @)
S

One is interested in looking for convective instabilities
propagating towards the axis—i.e., in the same direction as
the radial basic flow. Thus, for a given positive value of g,
one is interested in modes whose eigenvalue a has both its
real and imaginary parts negative. According to Egs. (25)
and (26), this ensures that the perturbation grows exponen-
tially as it propagates towards decreasing R (y<0), with
phase velocity directed towards the axis (i.e., «<<0). We are
mostly interested in the evolution as R decreases the most
unstable mode (largest |y]) for given values of g and n and in
how this evolution depends on the distance 7 to the plate. To
that end we define a nondimensional physical growth rate v,
and a nondimensional physical radial wave number «, based
on the radial velocity component of the perturbation (uiz):

— 59 )= L(E F)_ LoF
== o) ==\ Gpxrabx) =—a= g
(42)
Yu(R,m) =Re(a,) = - V(R)—Re[m], (43)
! ! Fo(n)
a,(R,7) = Im(a )=—a(R)—Im{F1(7])}, (44)
! ! Fo(n)

where Fy(n)=F(R;,7) and F,(n)=[dF(R, 77)/‘9R]R:Ri (for
simplicity, in the above expressions and in what follows, we
write R for R;). The nondimensional local phase speed of the
disturbances is defined in terms of «,:

c(R,m) = (45)

a,R,m)’

Finally, to measure the global growth rate of the distur-
bances, it is convenient to define an integral growth rate
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o0

YR, )|F(R,7)|dn
0

y!(R) = : (46)

f |F(R,m)ldn
0

which is more appropriate than the real part of the eigenvalue
—1v to characterize the amplification rate of the perturbations.
Note that y! ——7 for R— .

Alternatively, one may use a nondimensional physical
growth rate 7y, based on the azimuthal velocity component of
the perturbation (uy0):

Gl(ﬂ)] (47)

Go(n)

where Gy(7)=G(R;,n) and Gl(n)z[&G(R,n)MR]R:Ri and
the corresponding integral growth rate

Yo(R, 1) == ¥(R) - Re{

©

Y.(R, D|G(R, n)|dn
0

yI(R)= (48)

f |G(R, n)|dn

0

Since all the velocity components of the perturbations are of
the same order of magnitude, we shall use 'y{) or 7{4 depend-
ing on the numerical precision of the corresponding eigen-
function component.

To solve Egs. (37) and (38) numerically, the 7 depen-
dence of X is discretized using a staggered Chebyshev spec-
tral collocation technique developed by Khorrami [12]. This
method has the advantage of eliminating the need of two
artificial pressure boundary conditions at =0 and 7=,
which for that reason are not included in Egs. (34) and (35).
The boundary conditions at infinity are applied at a truncated
radial distance 7,,,, chosen large enough to ensure that the
results do not depend on that truncated distance (values of
Nmare DEtWeEEN 250 and 600 were used in the computations
reported below). To implement the spectral numerical
method, Egs. (37) and (38) are discretized by expanding X in
terms of truncated Chebyshev series. A nonuniform coordi-
nate transformation is used to map the interval 0= 9= 7,,,,
into the Chebyshev polynomial domain -1 <s=<1:

1-s 2¢y

n=c, , withey=1+—, (49)
=S T

and ¢, is a constant such that approximately half of the nodes
are concentrated in the interval 0 < 7<c;. This transforma-
tion allows large values of 7 to be taken into account with
relatively few basis functions.

The 7 domain is thus discretized in N, points, N, being
the number of Chebyshev polynomials in which X has been
expanded. In the results presented here, N, ranged between
140 and 200. With this discretization, Egs. (37) and (38)
become an algebraic nonlinear eigenvalue problem which is
solved using the linear companion matrix method described
by Bridges and Morris [13]. The resulting (complex) linear
eigenvalue problem is solved with double precision using an
eigenvalue solver. In particular, we have used one solver
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from the IMSL library, which provides the entire eigenvalue
and eigenvector spectrum. Since the dimension of the asso-
ciated linear problem is 16V, the computation time increases
very fast with the number of nodal points N,. Also, due to the
large dimension of the matrices, a relatively large amount of
spurious numerical eigenvalues are produced by the eigen-
value solver, particularly when ¢ is very small. They are,
however, easily discarded because the corresponding growth
rates change wildly as N, increases, instead of rapidly con-
verging to a finite value, as happens for eigenvalues of the
physical modes.

IV. RESULTS
A. Inviscid and parallel results

We shall consider first the inviscid or inertial instabilities
for R— 0, VR/Re*"+2) — (. In this limit, the above stability
equations can be written as (m=1 and L= V2 in what follows)

H' +iGN +2aF =0, (50)
—igF -2f'aF — f"H +2all =0, (51)
. , 1 , .
-igG-2f"aG + ’—%(Hg +gGiN) =0, (52)
N
—igH-2f'aH+11' =0, (53)

where the primes denote differentiation with respect to 7.
Eliminating F, G, and II, one is left with a single Rayleigh-

type equation for H,
H" + <4a2 - L)H: 0, (54)
ig + 2af
with the boundary conditions
H(0)=0, H(»)=0. (55)
The remaining eigenfunctions are related to H through

Hg'

G=—"— (56)
VR(ig + 2f'a)
1 .
F:2—H', IT" = (ig +2f"a)H. (57)
a
We have retained some terms proportional to R~ in or-

der to account for almost inviscid perturbations with some
swirl component (G # 0). But in the formal inviscid limit R
— oo, all the relevant perturbations have no swirl component
[G=0; see Eq. (56)] and are axisymmetric (N—0 for R
— o0 and n finite).

For real frequency ¢, Egs. (54) and (55) constitute a cubic
eigenvalue problem for the complex eigenvalue a and the
complex eigenfunction H. For g=0, the problem has no so-
lution, except for the trivial one a=0. For each ¢>0, if H is
an eigenfuction with eigenvalue a, then so too is —H' with
eigenvalue —a’, where § denotes the complex conjugate, for
the same ¢. Thus, to each mode with growth rate y and wave
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FIG. 4. Growth rate (y) and axial wave number (@) vs fre-
quency (g) for the most unstable inviscid modes (R — ).

number « there is a corresponding mode with growth rate —y
and the same a—i.e., the same phase velocity. If a<<0, the
wave propagates towards the axis (decreasing R), so that the
mode with y<<0 is unstable, while the corresponding mode
with y>0 is stable. Conversely, for a>0, the mode with
v>0 is unstable and its counterpart with y<<0 is stable. As
discussed in the previous section, we shall look for unstable
modes propagating towards the axis (<0 and y<0).

The cubic eigenvalue problem (54) and (55) is numeri-
cally solved using the linear companion matrix method [13].
First, Eq. (54) is discretized in N, nodes by a spectral collo-
cation method, so that the associated linear eigenvalue prob-
lem has dimension 3N, (we use N,=350 in the computa-
tions). Figure 4 shows the real and imaginary parts of a as
functions of g corresponding to the most unstable modes
(highest values of |y|) propagating towards the axis—i.e.,
with negative values of both vy and a. Since a(qg) is almost a
straight line, the group velocity of the perturbations, c,
=dq/ da, practically coincides with the phase speed ¢;=q/a,
which therefore is also negative, as it should for wave pack-
ets traveling towards the axis. Note also that the relevant
values of ¢ are small as a consequence of the scaling (33).

The eigenfunctions corresponding to the most unstable
inviscid perturbations (g=¢"=0.14) are plotted in Fig. 5. It
should be noted that in the present inviscid limit, the integral

growth rate yi,v= LY.

B. Nonparallel and viscous results for n=0

We now consider viscous and nonparallel effects (R and
Re finite, but large) for axisymmetric perturbations. For each
value of R and n=0, we select the less stable mode as a
function of the frequency g. For very large values of R the
results obviously coincide with the inviscid results of the
previous section. These inertial unstable modes first tend to
be more unstable as R decreases, and then their maximum
growth rate decreases. In addition, a different unstable vis-
cous mode emerges for finite R that eventually becomes the
most unstable one as R decreases. All these features may be
observed in Figs. 6-11.
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—Re(F)
— -Re(H)

n

FIG. 5. Eigenfunctions for the most unstable inviscid mode cor-
responding to g=¢" =0.14. Also plotted for reference sake is f’.

Figure 6 shows the integral growth rate y/ as a function of
q of both the most unstable inertial and viscous modes for
several values of R. It must be noted that we have used 7y’
for large R and 72 for moderate R (see also Fig. 10 below).
The reason for this choice is that, for large R, the azimuthal
component G of the eigenfunction is very small (as discussed
in the previous section, the inertial mode has no swirl, G
=0, for R— ), so that G is not appropriate to compute the
physical growth rate (y,), and we use F to compute y,. As R
decreases, G becomes of the same order of magnitude as F
(see Figs. 7 and 8). At the same time, F becomes more ex-
tended in space and one needs more and more points to have
Fy, and F; with precision enough to compute v,. For R
< 10°, approximately, the number of points needed to have
v, with precision enough is already so large that the compu-

0.015

0.01

0.005

—0.005

-0.01

-0.015
0 6.25

FIG. 6. Integral growth rate vs nondimensional frequency for
the less stable inertial modes (O) and viscous modes () for several
values of R. Solid lines correspond to 'yi, while dashed lines cor-
respond to 71[;- The different values of R plotted correspond to the
symbols in Fig. 10.
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FIG. 7. Eigenfunctions for the most unstable inertial modes for
different values of R: R— (solid line), R=2714.4 (dashed line),
R=584.8 (dot-dashed line), R=262.1 (dotted line), and R=126.0
(+). The maximum value of |F| is normalized to unity in all the
cases.

tation time and memory become prohibitive. However, G
and G, remain sufficiently concentrated near the plane 7
=0, even for relatively small values of R (G practically van-
ishes for 7>35; see Figs. 7 and 8), that 7y, can be computed
with very high precision using a relatively small number of
nodes. This is corroborated in Fig. 9, where yi is plotted as
a function of the value 7, at which the integrals in Eq. (48)
are truncated, using different N, and 7,,,, for a relatively
small value of R. It is seen that the resulting y{} remains
practically unchanged for #>5 (in contrast, to compute 'Y{,
for this R one would need a much higher value of #;,, and
the number of nodes N, to obtain it with precision enough
would be numerically prohibitive).

T T T
[ J
. .
10 15 20 25
T T T
)
» L L
10 15 20 25
T T T T
0.8 1
L N 4
T g
= 4 3
0.21, 1
o . L
Q 5 10 15 20 25

7

FIG. 8. Eigenfunctions for the most unstable viscous modes for
different values of R: R=2714.4 (solid line), R=584.8 (dashed
line), R=262.1 (dot-dashed line), R=126.0 (dotted line), R=79.4
(+), and R=43.1 (O). The maximum value of |F| is normalized to
unity in all the cases.
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- - N=140
— N,=180

10 15 20 25
T}int
FIG. 9. yi as a function of the 7, at which the integrals in Eq.
(48) are truncated for two values of N,, as indicated. R=27, n=0,
q=0.22; 2,,,,=500 (N,=140), 7,,,,=600 (N.=180).

The maximum values of y!,, (denoted by 7,,,,) and their
corresponding frequencies and axial wave numbers g,,,, and
@, are plotted in Figs. 10 and 11 as functions of R, both for
viscous and inviscid modes. It is observed that y’ ,for the
inviscid mode undergoes a discontinuity at R =500. In addi-
tion, below this Reynolds number, the inertial mode is no
longer the most unstable one, becoming the viscous mode
more unstable. As R decreases further, the growth rate of
both modes decreases, until they become stable for R
=28.6 (inviscid modes) and R=25.6 (viscous modes; see
Fig. 10).

C. Nonparallel and viscous results for n #0

Since the azimuthal wave number n enters the stability
equations as N=n/R, the stability properties of the nonaxi-
symmetric perturbations differ very little from the axisym-

|
Ymax
o
T

" Fooaon o s Lo RS
10 10 10 10 10 10

FIG. 10. Maximum values of the integral growth rate vs R for
the inertial modes (O), and for the viscous modes (). Solid lines
correspond to yL, while dashed lines correspond to y{). The dash-
dotted horizontal line corresponds to the inviscid limit R — ce.
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- {a):

Amax

max

FIG. 11. Frequencies (a) and axial wave numbers (b) corre-
sponding to the maximum values of the integral growth rate vs R
plotted in Fig. 10.

metric ones when R is large. For this reason, we have con-
sidered only the viscous modes for these spiral perturbations
(n#0) and for values of R near their critical ones, where the
differences with the axisymmetric results become appre-
ciable. Actually, we only report here the critical values R|,
below which these viscous, nonaxisymmetric modes become
stable (Table I and Fig. 12). It is observed that, for counter-
rotating perturbations (n<<0), the critical values of R are
larger than R;,_,. For corotating perturbations (n>0), the
critical Reynolds numbers are smaller than for axisymmetric
perturbations, until a minimum is reached for n=4 (R}
=R/ . =23), and then the critical value of R increases as n
— 0, Thus, the last perturbations that become stabilized by
viscosity as the axis is approached are spiral perturbations
with n=4.

V. CONCLUSIONS

In this work we have analyzed the spatial stability of the
viscous boundary layer induced by a free vortex, which near
the axis coincides with Long’s vortex, on a solid plane per-
pendicular to its axis. Viscous and nonparallel effects have
been taken into account consistently in the evolution of the
perturbations towards the axis.

For large Reynolds numbers (i.e., far away from the axis,
R — ), the flow is inertially unstable for axisymmetric per-

TABLE 1. R€ for several values of n.

n Re¢ n Re¢
-2 27.8115 4 22.9849
-1 26.4338 5 23.1792

0 25.6430 6 23.6662

1 24.7337 7 24.3608

2 23.7901 8 25.0700

3 23.1772 10 26.3457
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FIG. 12. Critical values of R for the most unstable viscous
modes as functions of the azimuthal wave number n.

turbations (n=0). As the axis is approached (R decreases),
new viscous instabilities are found that become more un-
stable than the inertial ones for R<<R*=500. These viscous

PHYSICAL REVIEW E 72, 036305 (2005)

instabilities appear for both axisymmetric and nonaxisym-
metric perturbations, and eventually all of them become sta-
bilized by viscosity as the axis is approached. We find that
the last perturbations that become stable as R decreases are
nonaxisymmetric, corotating perturbations with azimuthal
wave number n=4, though all the critical Reynolds numbers
for the different values of n are in fact very close (see Fig.
12). The minimum critical Reynolds number at which the
perturbations with n=4 become stable is found to be R},
=123, which corresponds to a vortex Reynolds number Re
=1103. Since this critical value is sufficiently large for the
boundary layer approximation to remain valid, these results
show that one may use the present viscous boundary layer
vortex as axisymmetric boundary conditions for the (3D) nu-
merical simulation of the Navier-Stokes equations to find out
the structure of the effusing core flow turning upwards near
the axis, provided that the inlet flow is taken at moderate, but
high, Reynolds numbers.
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